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1. INTRODUCTION

Gas turbine engine vibration is influenced by mechanical unbalances of various engine components
in addition to other mechanical faults occurring in gear boxes, bearings, pumps, gears per se, compressor
rotors and stators, as well as shafts (Zabriskie 1974; Alilwood and Christic 1991; Kerfoot, Hauck, and Palm
1973). The vibration sensitivity to each foregoing component varies widely and cannot be understood
unless each individual element is analyzed separately and then eventually synthesized collectively. It is
now more and more necessary to predict accurately both the local and global performance of gas turbine
engines for diagnostic purposes. Although in-depth analysis can be made of each component via finite
element analysis, these methods are very time consuming and tedious and require extensive resources.
A quick look at the problem from a lumped parameter perspective is sometimes sufficient to understand
the diagnostic situation at hand. In particular, it behooves us to access fundamental concepts quickly in
order to appreciate the accelerations and forces of the various components in a systematic but yet

methodical approach.

Hence, the purpose of this report is to view the vibrational phenomena of the gas turbine engine of
an M1 tank from a fundamental and elementary approach, to gain familiarity with the physical components
and their relation to each other, using free-body analysis and fundamentals of engineering concepts. It
is with certainty that a unique insight can be gained by this approach that can never be achieved via

complex numerical techniques, at least not at the outset.

It is quite clear, however, that in-depth distributed analysis can naturally ensue for a particular
component or assembly if the fundamental approach reveals that, in fact, a problem exists for further

investigation.

2. APPROACH

In appreciation for a vibration analysis of the gas turbine engine, we should first establish elementary
principles and analogies for various parts of the overall structure. This can only be done through an

examination of first principles applied to elementary example components.

Let us first examine the mass-spring system as follows:




Newton's Method

Assuming the restoring force is in the elemental spring, we have

IFy = -kX, (1) ’

such that the force is acting from right to left.

(1) If we displace the mass, m, an amount X positive from left to right, then X, X, F are

also assumed positive.

(2) Using Newton’s Second Law

IF = mX, 2
= kX = mX, 3)
or
%+ Xx -0 @
m
The solution is given in the Appendix as
Vo .
X({t) = Xpcosot + Lsinat, 5)
®

1
where ® = [TI:I_J 7 rad/s (the natural circular frequency). '

If we employ the energy method, then




(1) The energy stored in the spring is
= -_— = 1 2
V = ( Lx [mg + kX] dX mgX) _2.kX .

(2) The kinetic energy of the mass is

T = 1mx2
2

(3) Since there is no dissipation of energy,
T + V = Constant

_l.mxz + _l.kX2 = C.
2 2

Hence, if we differentiate equation (9), we have
X [mX + kX] = 0.

Since X # 0 for all time, then equation (10) reverts to equation (9).

©

)

®

®

(10)

Typical of gas turbine engines are rotating shafts, such as quill shafts, sun gear shafts, and shaft

assemblies transmitting engine torque from various stage rotors to gear shafts. Hence, consider a disk of
mass M and radius R at the end of a "weightless" shaft fixed at the other end. The disk vibrates such that

the restoring torque is k¢ ¢ in which the torsional spring constant becomes

GI
=P
T

(11)




For a circular cross-section, shaft of radius r,

Ip = _;_nr4 (polar moment of inertia)

G - Shear modulus of shaft material.

(12)

If we displace the disk through an angle ¢, the restoring torque becomes k¢, ¢ opposite in direction to ¢.

Using Newton’s Second Law,

ZTO = Jo¢
such that
I = _;_MR2 (mass moment of the disk about its center of mass),
and
IT, = -k, ¢ (torque acting on disk which is opposite positive direction of ).
We obtain,
k40 = Job,
or
. . @I
Igh + ko =0 = ZMR2§ + P =0,
2 L
or
4
¢ + nGr 6 =0.
MR

The solution of Equation (18) is given in the Appendix as

13)

(14)

(15)

(16)

a7

(18)



0 = 09 cosat + 20 sina, (19)

where

1

4

©=|7C" |7 ragss. (20)
MRZL

Considering other turbine engine components analogizing a pendulum such as the connection of the inlet

housing assembly to the air diffuser housing, we have,

ZM, = -mgL sin, 2D

displacing mass counterclockwise as positive such that §, &, and M are positive counterclockwise.

Using Newton’s Second Law,
IM, = Ij0 = -mgLsin6, (22)

where

I, = mL? (23)

(moment of inertia of its mass with respect to axis counterclockwise normal to the view). Thus,

mL28 + mgL sin@ = 0, (24)
or for 6 small,
sin@ = 0.
Therefore,
+20=0. 25
T (25)




Equation (25) was solved in the Appendix. The solution is given by,

0
0 = 6, cos ot + 2 sin ot, (26)
®
where
1
o = [%]7 rad/s (natural circular frequency). 27

If we apply the energy method to the same component, then let us assume that the change in potential

energy in the system is due to mass m moving upward (gaining energy) in a gravitational field.

V = mg(L - L cos 6). (28)

The instantaneous velocity of the mass is

v =L8. (29)
Thus the kinetic energy is
1 2 1 3\2
T = Zmv? = 5m(Le) i (30)

Since there is assumed no loss in energy (no damping),

T + V = constant, (3D

or

%mL2 62 + mgL(1 - cos6) = C. (32)

If we differentiate this expression with respect to time, we obtain




mL266 + mgLé sind = 0, (33)

or

6 [mL2‘6 + mgL sin e] = 0. (34)
Since @ # 0 for all time (no motion), then

mL28 + mgL sin6 = 0, (35)

or for 6 small,
6+L809-= 0, 36

whose solution is given as for Equation (25).

To analyze the inlet guide vane (IGV) slotted lever associated with the IGV system, we can analogize

the situation through a mass spring system by the use of Rayleigh’s Method to include the effect of the
mass of the spring.

If we let,

Z - which locates a point on the spring
u - which is the definition of the spring at Z,

then,

Kinetic energy = T = 1 mx2, % J: (pdz) u?

3 37N
=V = lpx?2

Stored energy = V = ka (38)

we assume us= _i.X ’ (39)




then,

2 .
T=Lmx?+ L (L(px?) 209z . 1 yx2
2 ) Z 2
=lM+£l_ x?
3 3

- Also, since m = p4, it follows that @ = K

M+E
3

1
—_— -2-, the Rayleigh frequency.

3
i]xz (40)
(41)
(42)

Thus, one-third of the mass of the spring is added to the mass M to account for the effect of the spring

1ass.

Furthermore, if we could extend the IGV slotted lever analogy to include a forced-simple mass spring

system where F sin Qt is the force and k is the spring constant, then

ZFx=mX,

ZFX = FO Sith - kX,

SO
mX + kX = F, sinot,
or
F,
X+Xx=0gnor-"0k
m m k o
or

X =8, w?sinQt,

sinQt,

43)

(44)

(45)

(46)

47




where

Fo
& = —> (48)
or
X + @*X = 8,07 sinQt. (49)
The steady-state solution as given in the Appendix is
X, = & sinQt. (50)
1-r1
In the system shown in Figure 1,
le ]
N b
o
< O
F,SINQt
a
k

X Nw—p
/7

Figure 1. Torque-spring mass system.

a=10in,b=15in, mg=5.01b, and k = 50 Ib-in. We can then determine (a) the natural frequency, and

(b) the steady-state solution, i.e.,

Jo8 = I (Torque), such that  J; = mb2 (51)
= mb2® + ka%0 = F,bsinQt (52)

. ka? F,b
6% 5. 7 gnoy (53)

mb? mb,




Noting that

2 2
0 = Xa° | S0x Q07 _4g1933 (54)
mb® 5. (502
386
(Note: m = _V:/_ ~ [386 in/52] ], (55)
g
where, g ~ 386 in/s?
= 0=4144radfs; F;=251b; Q=50 rad/s. (56)
Thus,
Fb
AMPL -6, -8, L . D 1 _25x15 1 57
1-r* ka’? _(Q) 500102 1[50 V
© 4144 | -
or

6y = 0.164 radian = 9.428 degrees .

(Note: = Forced frequency )

Free vibration frequency

To analyze the torque distributed to the quill shaft in the Accessory Gearbox Module, let us consider
a 2-in-thick steel disc having a radius of 8 inches subjected to an oscillatory torque of 1,000 sin
100m t in/lb. The steel shafi from which the disc is suspended is fixed at its upper end, has a 2-in

diameter, and may be considered weightless. We can easily determine:

(1) The natural frequency of the system,
(2) The steady-state angular amplitude of motion of the disc,

(3) The maximum oscillatory shear stress in the shaft.

10




Thus,

0.3

x T (8)° x 2.
386.4 ®

Mass of Disk = pV =
Mass Moment of Inertia = 0.3122 Ib; s - in, i.c.,

1= 1MR2- %x 03122 (8% = 9.99 Ib; in s2.

2

Shaft Spring Constant:

GL, 12 x 10° x 1.57

= = = 1.256 x 10° in/lb/rad,
Ko L 15 /
where
4 4
Polar Moment of Inertia is I = f.(_i_ = 1‘(2_) = 1.57 in4.
p 32 32
since
K 6
@ = 8 o 126 X 107 _ 196 » 108
J 9.99
= 0=354rads or f=_2 =354 _ 56 cps ().
2n 2n
Also,
T,
90 = —O ! ,
Kq 1- l'2
where

Q = 100m = 314.16 rad/s

11

(58)

(59

(60)

(61)

(62)

(63)

(64

(65)




and

r=8_ 31416 _ ey
® 354
> 0= .1 _3734x10°
1256 x 10° 1 - (0.887)2
Thus,
T,C k 0, x1
Shear stress = T = 0 = ( 4 0) 1b/in2,
I 157

where T, = torque, and

C = distance from neutral axis to extreme fiber.

Hence,

1.256 x 10° x 3,734 x 1076 x 1
1.57

T= = 2,987 1b/in?2.

(66)

(67)

(68)

(69)

The situation of the tie rods fastening the forward assembly to the rear assembly can be typified as

a cantilever beam with a 200-1b weight at its tip. An exciting force equal to F = 500 sin 20 & t acts on

the mass along its vertical centerline. We can then determine

(1) The natural frequency of the system,
(2) The steady-state amplitude of the motion of the mass, and

(3) The maximum bending stress.

Hence, we have,

=20 _os171p, = W
386.4 g

12

(70)




and

with

and

Therefore,

Thus,

where

6
3ET _ 3 x 30 x 10° x 0.667 Ib/in

K = ;
L3 (24)

1=_Lond=_1 x1x@?=0667 in
V) iz

K = 4,342 1b/in.
0 =K 4342 _gag
M 03517

= ®=9159 rads, f=.2 =145 Hz.

o 15w ! = 0217 in

K 1_2 432 1 _ [20% )2
91.59

and the steady-state displacement = 0.217 sin 20 &t t.

MC

If the bending stress at the support = ¢ = -

= M = (KX)L = (4,342 x 0.21T) x 24 = 22,613 in/Ib

13

(71)

(72)

(73)

(74)

(75)

(76)

an

(78)




whereas

T,C

- 22,613 x 1 = 33,900 lb/in2 = — (79)

° 0.667

The IGV operation occurs when fuel from the electromechanical fuel system enters the IGV actuator
and causes the piston to move. The accompanied movement might be typified by a mass-spring-damper

system such that

Exciting Force - F; cos £t
Fy - Amplitude
2 - Forcing Frequency - rad/s

such that
MX +cX + kX = FycosQt, (80)
or
.. . F
X+ Cx 4 Xx o 000, (81)
M M M

The transient solution is (see the Appendix)
X, = G075 cos (ayt - ¢). (82)

This response approaches zero after a brief time, therefore, only the steady-state response exists, i.e.,

X, = X cos(Qt - ¢,), (83)

where

(84)

Xo — dynamic amplitude =

14




and

r= Q _ Forcing frequency (85)
‘@ Undamped natural frequency
and
C i c
= _ this case § = —— 86
: [0} " ¢ 2mo (86)
also,
Fo o
8, = — (Stanc displacement of M due to a force Fo)- 87)
Hence,
0 = tan! 250 (88)
1-r1
which is the phase angle between the force and displacement.
Atresonancer=1, 0 = 1 o 0, = 90° (89)
EX3
AsTo o 0 50, = o, — 139° (90)
] -yl- ] 1 .

Identifying the dynamic force amplitude transmitted into the support (Figure 2),

|-—>X

— K M |——F,COSQt

MUHMIMIN
|

Figure 2. Mass-spring damper system for IGV actuator.
15




we have

Fp = CX + kX = Fpg cos (Qt — ¢, + 6,).

Since
o Bicos@t-oy 1
[(1 _ry2, (2§r)2] 7
28r)? :
= Fpg =F, Ll —lr;)g ?)(2&)2}7,
hence,

1
Fro - 1+ (2&rf Zz

T = The transmissibility = E 5
N (R Y

o1

(92)

(93)

(%4

"Isolation” of various components for analysis within assemblies is common for all gas turbine

engines. If we consider in a generic sense any of the turbine engine modules which are modeled as a

spring-mass-damper system, then we have

X; = Xjg cos Qt = displacement of support or "box"

X, = Absolute displacement of mass to be isolated.

Equation of motion of mass m is

1

Xy v — Xy v 2 Xy = 2 X + £ X = X,002| 1 + (260)2 [Zcos(Qt + o),
2 KXot KXy = 2% 0 S % = X002 (1 + (280 | Teos(at + o)

where the solution is

1+ (2§r)2
1- r2)2 + (2§r)2

X, = Xao c0s (Qt = ¢ + 0,) = Xy

16

* COS (Qt -0 + ¢2).

95)

(96)



The ratio of the amplitude of the isolated mass m to the amplitude of the support or "box" is

1
X20 - 1+ (2§r)2 2

5 )]
%10 (1 - r2) + (28r)?

such that this ratio plots exactly as a "transmissibility” curve.

Considering the rotating system assembly and its associated platform, if the assembly and platform
are displaced and released, then the displacement vs. time might look like the following (Figure 3)
(assuming a total weight of 80 1b).

Y

1.8 —

s ] i |

025\ 05 /075 .1 .125~. t
N ’ ~ L (sec)

Figure 3. Displacement vs. time for rotating system assembly.

What is the damped natural circular frequency? What is the damping ratio £? What is the undamped
natural circular frequency?

Let us proceed as follows:

X
S=ln_" =118, 05877 -2n¢ (98)
X ., 10

so that £ = 0.0935.

17




From X vs. t, one cycle takes 0.1 s

But,

1 cycle
f, = = 10 cps 9
d 0.1s P 9
= 4 = 2xnf; = 62.8 rad/s = 207 rad/s. (100)
1
w0y = ol - &7 (101)
© .
mo=_% - 628 _ 2 628 radss. (102)

1
[1-¢d7  [1-c0mss)2]?

If an exciting force 10 sin 30 & t acts on the assembly and platform, then, what is the steady-state

displacement and what force is transmitted into the support as shown in Figure 4?

lwsmsont

MACHINE

PLATFORM

ki2 L ¢ §W2

G444

Figure 4. Machine-platform assembly of IGV assembly-casing in turbine engine.

18



Since

X = (103)

and
Fy
K
and
. 2 k 2 80 2
= __ then k = Mo* = — x (62.8 105
since @ i en 356 (62.8) (105)
= k = 817.37 Ib/in (106)
and
Lo - 00122imr= 22308 s (107)
817,37 ® 20%
hence,
X = 0.0122 _ = 0.0095 in.  (108)
2
[(1 - (15)%)" + (2 x 0.0935 x 1.5)2] z
Also, the transmitted force is
2
F,o=Fy |1+ 2817 [T oo (109)

(1 - r2)2 + (2§r)2

If we look again at the IGV operation returning us to the mass-string-damper system as in Figure 2,
but with a rotating unbalanced external force due to perhaps wearftear, we have

19




MX + CX + kX = me Q%cosQt

(Note that the horizontal component = me Q2 cos Q t.)

or
2
X + .SX + _kX - el cos{dt.
M M

I - rotating mass; e - eccentricity - inches
€ - angular velocity - rad/s
The steady-state solution is

X =2e r* cos(Qt - )

P =M 01),

where

c -1 2&r
= —y = tan .
§ 2M(1) ¢1 1 - r2
Taking into account Force Transmissibility, we have
Fr =kX + CX.
And noting that
x=I¢ r? cos(Qt - (p)
M ] ’

b= e+ el

20

(110)

(111)

(112)

(113)

(114)

(115)




= X = - cos (Qt - 0). (116)

Now, since

Fr = Fpg cos(Qt - 4))

1
1+ (2§r)2 7'

- 2
= Fpo = meQ - 5 -
(l -r ) + (2&r)

(117)

1
F 2
TR = TO _ 1+ (2&r) 7. a18)

meQ? (1 _ rz)z + (281)2

As a specific application of the unbalanced force phenomena, consider a typical gas turbine engine

rotating gear shaft weighing 40 Ib with an unbalanced torque applied of 0.5 in/lb. Some tests indicate a

natural frequency of 1,000 rpm and a damping ratio of 0.2. Let us determine the steady-state amplitude

when operating at 1,200 rpm and the amount of unbalance force transmitted into the support.

Letting r = E = ﬂ =
0 1,000

and

where

12,12 =144, =02  26r = 048 (119)
= Q=1,200 x %_‘g = 125.66 rad/s | (120)
me = 93100 _ 606129 in/mb, (121)

386.4 in/s? »
g = 386.4 in/s? = 32.2 fi/s? (122)

21




such that
40

= =0.1035 1b.
386.4
Steady-state displacement gives us
x - e r? _ 0.00129 1.44
™M 1 01035 T
[(1 -1 . (2§r)2J 2 [ - 1447 + (048)7]
X = 0.0276 in.
Since Fy = Force transmitted,
2 —
= Fp=mea?| 1+ (281) YTy

(1 - r2)" + (2802

(123)

(124)

(125)

(126)

If we have a periodic but nonsinusoidal excitation of an engine component analogous to our spring-

mass system, then,

F(t) = Ag + T A, sins Qt+ I B, cos Qt,

s=1 s=1

where

2n 2n

Q Q .
Ay =2 jo—E F(t)dt; A = — J;)'TT F(t) sinsQtdt,

2n
B = % j;TF(t)costhdt.

22

127)

(128)

(129)



For the previous case,
2n

T
0= o= [T 2Fgdt + [F 0 dt =F (130)
2n /O
Ee)
n 2% 2F
A =8 F oF, sinsQtdt + ffy 0-dt =2 fors odd (131)
S x Jo T TS
n 2r
Q o}
= 2° t +dt=0 132
B 2nj(-)ﬂZFocossQ dt+% 0 (132)
= 2F, .
Flt) =Fg+ £ _%sinsQt. (133)
1,357 %S
Then,
.. F o 2F
X+a@?x=24+ 3 0 sins Qt, (134)
m 1, 3,5 7 Tsm
whose solution is
X, = X, .
X=__+ T —  __sinsQt, (135)
2 1,357 2
1-r,
where
2F
X,= -0 1, =52 smde?=X (136)
k 0] m

Most of the vibrational problems associated with gas turbine engines involve torsional analyses of
components, viz., rotating gear shafts, rotating turbine blades, rotors, nozzles, bearings, spacers, shims, etc.
In many instances, two-degree-of-freedom studies are required for consideration of vibrational diagnostics.

23




Looking at a typical disk-shaft configuration, let us consider the following generic situation of two disks
in torsion on a shaft:

X Torqueg = J& . k0, - k, (8, - 8,) = 1, 6.

Hence,

1,8, + (k; + ky) 8, + k, 8, = 0. (137)
Also,

IT=0,08, = k(0 -6,) =186,
Hence,
1,0, + k8, - k, 0, = 0. (138)
0, = A, cos(mt + )

Assuming

8, = A, cos(ot + y).

We obtain from (137) and (138)

A, ' (139)

Fork, =k, = k and J; = 2J,, then the |Det| = O yielding the frequency equation,

24




or
((00 - m2)2 - % (D‘:) =0,
where
2 _k
0y = J_z
solving

or

For o® = 0] = 0293 &} = - -
A 7
21 W,
) ’ A, (1-1707) @
For W = 0)2 = 1.707 Wo = =
A, 3
)

25
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(141)

(142)

(143)

(144)

(145)

(146)




Consider a two-degree-of-freedom system having a forcing function F; sin Q t acting on mass m,.

The coupled equations may be written in the matrix form:
mp 011X | fky kg ] Xl (F sinQt
L[+ = . (147)
0 my X, kip Ky || X2 0

For a steady-state solution, assume
X; =X;sinQt and X, = X,sinQt. (148)

The two equations above become:

2
(kll - mQ ) k2 X, {Fl} (149)
X, [~ '
ki, (kzz - ngz) 2 0
Using Cramer’s Rule,
F) kp
2
2 D
(kn - mQ2 ) ki
2
ky, (kzz - myQ )
such that D = determinant of coefficient = (kll - mlﬂz)(k22 - mzﬂz) - k122 and
-Fikpp
= —— (151)

26




If we let ®, and ®, be the two natural frequencies, then D may be written as
D = mlmz(mf -92)(m§ 02) (152)

where ®; and o, are found by setting D = 0.

An alternative analysis or formulation using transfer matrices can be employed for obtaining relations
that govern the motion of a discrete system composed of lumped masses connected by massless elastic
parts. The properties and conditions are expressed by state vectors at sections or points immediately
adjacent to the sides of a discrete mass. Specifically, a state vector is a column matrix which contains
the components of the displacements, forces, and moments at a point or station adjacent to a mass. Such
a state vector can then be transferred to another location by a transfer matrix, there being two types. A
point transfer matrix transfers a state vector from a location on one side of a mass to the other side, at the
same designated station and thus is a transfer at a point. A field transfer matrix transfers a state vector

across a spatial distance or field of the system from a station at one mass to a station at another mass.
The relations resulting from the use of transfer matrices lead to a solution in which the natural
frequencies and mode shapes may be determined from the characteristic equation if the number of degrees

of freedom is small or otherwise by a numerical procedure such as Holzer’s method.

Consider a general mass-spring system that is restricted to move in the horizontal direction only. The
letters "L" and "R" are used to denote the left-hand and right-hand sides, respectively, of a mass station.

For spring kj, the following relation can be written:

i1 (153)

(154)
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In matrix form, these would be written as

. (155)
j

Or, more concisely,

(156)
where

L R
ool - f)

asm
j -1

are state vectors for the displacements and internal forces at stations j and J— 1, respectively. The scalar
matrix,

(158)
j

is the field transfer matrix which relates {v} JL to {v};{_ |-

For mass m, the following equations apply:

(159)

(160)
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Now for harmonic motion of m;, Xj = Aj sin (ot + ¢) and ij= -2 Aj sin ((ot + ¢), so that

X. = —a’x.. (161)

Equation (163) then becomes
(162)

In matrix form, Equations (162) and (165) would be expressed as

R 1 0 { }L
X X
- , 163
{F}j ,:—m(n)2 ll Flj (163

or

W5 = [P} (164)

Here {v}? and {v} JL are state vectors for the displacements and intemal forces to the right and left

of mass m;, respectively, and

1 0
[p]; = [ ) J | (165)
- 1 ;

is the scalar point transfer matrix, which relates {v}?z and {v}]L Substituting Equation (159) into

Equation (164) gives

Wi = [PlFEL W = QR L (166)
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where (see Equations [158] and [165])

[Q]j = [P]j[F]j’ (167)
1 o] 1l
[Q]j = { ) J k (168)
-mo° 1 i lo 1 j
[ 1 ]
(1x1+0x0) [1x%+0x1) 1 '
ie, [Q) = = . (169)
(—m(o2x1+1x0)(—m(ozx%+lxl]. —m@? 1__mT‘°2
i L )i

This procedure can be continued. Thus

R =[], W&, (170)
where

[l = [Pla[Fl.[P], _ y[F], _ | [P} [F],. (171)

Equation (170) expresses the state vector {v}s at the nth station in terms of the state vector {v}, at the

initial station.

Noting that Equation (171) represents two algebraic equations, and that usually a boundary condition,
such as X = 0 or F = 0, would be known at each end of the system, then the equations can be solved to
yield the natural frequencies and principal modes of vibration. The precise manner in which this would
be carried out is not readily apparent, and will be illustrated below. Two methods are suitable. The first
yields the nth-order characteristic equation, which can then be solved for the n natural frequencies. Each
natural frequency can then be substituted into individual stages of the determinations to give the amplitude
ratios and thus the modal pattemn. This procedure is feasible only if the number of degrees of freedom

is small.
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The second method is to follow a numerical procedure such as Holzer’s method. By assuming a value
for @® and assigning a value to the unknown boundary condition at station O, then the unknown
parameters of x and F can be determined at Station 1 by the related matrix multiplication. This process
can be continued from one station to the next until the final station n is reached and the boundary
condition there is checked, yielding the error. A new value of @ would then be assumed and the entire
procedure would be repeated, resulting in a new error value. The process can be continued until the error

is brought to zero—or rather, to acceptable small value.

To illustrate the above methods, consider the mass-spring system shown in the Figure 5. Let us now
use transfer matrices to determine the principal modes and natural frequencies by the first method

described above. Assume k; = k, = k3 = k and m; = m, m, = 2m.

7 k1 k2
%www ™ AVWWA ™
Y 72
|

| |
© (1) @ @

Figure 5. Mass-spring system for transfer matrices.

The boundary conditions for Sta. OR are X = 0, F = Fo, and for Sta. 3R are x = 0, F = F;, where F,
is unknown. The first transfer matrix would be written for Sta. 1R in terms of Sta. OR as

. .
2
R 1 R
X X
. {}
Fli ) m, 0’ Flo 172
-mo° |1~
| L
o
R
= {0} a73)
) ma? Fjo
-mo° |1 - .
i k i
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Next, the transfer matrix for Sta. 2 is written as follows:

b.)

—mzﬁ)

i ky 12

r 1T .

1 % 1 %
: H
- F
2 2 0
-2m@? (1 - 2me J -me? |1 - ﬂ
L k | k )]

f
o
8
e
(3
X
| =
+
and
N
dk
[
N—
—ed
|
~| 8
()
N——
[ —
[

[ 2 _ m®? ]
X 2
) k {O}R
( Sma? 2m 2(04] Flo (174)
1 - +
2
i k kK )l :
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The computations in the first column of certain of the transfer matrices shown by the vertical line are

omitted as they are not needed, due to the zero in the first row of the state vector for Sta, OR. Continuing,

c.)

"
P
p— ,g-l._.
|
—
=~ v
|
wla
NSN
~—
1
x

( 2 2 4
1 x 2 - o +lx l_Smm +2m29_
k k2] k k k? R
. ¥
2 ( 2 Flo
0x.2_ m < +1x1_5mo) + 2m 20k 2
kK x2 \ K
L 13
(3 6mo? , 2mZ%e’
kg2 k3 {0 }R
= F
1 - 5mo? , 2m%e’ 0o
k ) (175)
L B
From the first algebraic equation of this final matrix, we have
3 _ 6me’ . 2m2e!
0= [E = + = | N (176)
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hence

m%e* _ 3moe

k2 k

m? _3-/3 3+3

k2 2 2

This defines the natural frequencies as

a7

(178)

(179)

(180)

(181)

(182)



and substituting these into Equation (174) yields

X2 = 1 — J3_.
2
Thus the principal modes are as follows:
Rl CHLUS Yt VLIS RN KX PP (183)
2 m m 2
ol = 3+¥3 k _ o366k, Aj=1, A= 1-V3 . o361, (184)
2 m m 2

For a torsional system composed of disks on a massless shaft, the analysis and formulation of the transfer
matrices are identical to that of the rectilinear mass-spring system. Thus considering the torsional systems
and corresponding free-body diagrams shown in Figure 6, the transfer-matrix relations for the torsional
shaft (spring) KJ are

1
L 1 — R
{1&} =l k {13[} . (185)
t J t J -1
01 ;
or in general form
Wy =[5, (186)

For disk Ij, the matrix relations for harmonic motion are

o )R 1 0 { 0 }L
= , 187
{M,}j [—1(02 IJJ- M, [ (187)

having the general form

Wy = [Pl (188)
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1 ! o
L 1 R Ly R
K1-1 /‘) {\ KI KM
—=)
R R
Mm L M‘H M" L L\l Ml‘
6, 4

(b)

Figure 6. Torsional systems associated with gear box of M1 turbine engine.

Substituting Equation (186) into Equation (188) gives

{V}JR = [P]j[F]j {V}JR_ 1

= [ 1. (189)
where
[ 1
K
[Q]; = : (190)
-lo? [l - E)i]
| K Jj

M =@y M5, (191)
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where

[Qly = [P, [F], [P], _ 1 [Fl, _ 1 = [P]; [F];. (192)

Equations (185) through (192) are the same as those for the mass-spring system except that m has been
replaced by I, X has been replaced by 0, and the k now represents a torsional spring constant.

Let us now consider a torsional system shown in Figure 7 and let us employ transfer matrices to

determine the principal modes and natural frequencies by the second method described above (the Holzer

procedure).

% ks =2K k;=1.5K ky =K BEARING
L

) (1) 2 ()]

Figure 7. Torsional system of M1 gas turbine engine with bearing.

The boundary conditions for Sta. OR are 8 = 0, M, = M,, = 1 and for Sta. 3R are 6 = 6, M, = 0, where
05 is unknown. Assuming the first trial frequency value as 0?=10(K I), and referring to Equation 202,
the first transfer matrix for Sta. 1R in terms of Sta. OR would be written as

a.)

_| = {0}“
—= | te | (193)
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As in the preceding example, the elements of the first row of the transfer matrix shown by the vertical
line are not included as they are not needed, due to the zero in the first row of the state vector for Sta. OR.

This condition also applies to subsequent transfer matrices in this example.

Next, the transfer matrix for Sta. 2R is written,

b.)
[
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Next

c.)
[ 1
1 - Ig

{e}R_ k 3 {O}R
M, [ = / sl
s |_1xk 1-le) -z 0

i T "% T)] )

T [ L

Y || {O}R

= s 111/,

-_k03—-6-

b
1,. (195)

From the second algebraic equation of this matrix, M, = —% representing the error since M, should

be zero.

A new value of ? is now chosen and the process is repeated, resulting in a new error. This is
continued until the M5 error is reduced to an acceptable value, and the corresponding «? is then a correct

natural frequency value. Plotting the error vs. the @2 value aids in interpolating for the correct frequency
values. Such continued calculations are not shown here, but the correct (acceptable) ®? values can be

verified as

0? = 0.2168%, 0l = 1.0965%, 0l = 2.1035%. (196)
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The corresponding errors are
MG = 000000, M2 = 00013, M = 0.00023. (197)

The principal-mode amplitude ratios can be determined by substituting the natural frequency values into
the transfer matrix equations for each station.
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APPENDIX:

TYPICAL SINGLE-DEGREE-OF-FREEDOM DIFFERENTIAL EQUATIONS
AND THEIR SOLUTIONS
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1. FREELY VIBRATING—NO DAMPING

X+0X =0
Solution
Vo
X =X, cos ot = — sin ot
@

where

X — initial displacement — in
Vo — initial velocity — in/s

® — natural circular frequency — rad/s
2. FREELY VIBRATING—WITH VISCOUS DAMPING
X +280X + 0*X =0

Solution

X = e Alcos(mo t- ¢)

1
‘°o=‘°[l‘§2]7

2 v0+X0§a)27
Ay = (X,
®o
Vg + EOX
¢ = tan-! |20 EoX,
Xo®g

X, — initial displacement — in
Vo — intial velocity — in/s

@, — damped natural circular frequencies — rad/s.
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3. CONSTANT FORCED VIBRATION—NO DAMPING

X+a’X =G
\
X = X, cos u)t+_.9.sinu)t +£,
() ®2

where G = a constant independent of time.

4. FORCED VIBRATION WITH NO DAMPING

X + 0°X = G@t) = GycosQt

Solution

Vo . Gy

X = Xpcos@t + — sinot + — — [coth - coscot]

@ m2 - 92
2 — forcing frequency — rad/s
Steady-state solution

Gy Gy
Xs = — cosQt = cosQt,
@’ - Q? w2l-r

where

el
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Subcases (steady-state solution)

(1) Gy = G, 0?
G,
Xg = cosQ2t
1-r
(2) Gy =G,
2
X3 = G, cosf2t
1-r1

5. FORCED VIBRATION WITH DAMPING

X + 280X + 0?X = G(@t) = GycosQt

Solution

G
.;.);cos(ﬂt - ¢1)

X = A;e59! cos (mot - ¢) + 1

- 2+ eep]
®y = m[l - &2]%

Xo®o
¢ = tan-! Vo + §0X,
Xo®g
Q
)
o
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Steady-state solution

Subcases (steady-state solutions)

(1) Gy = G,w?
X - Glcos(Qt - ¢1)
S 1 °
6 -9+ el
(2) Gy = G,?
X = G,r? cos(ﬂt - ¢1)

s 1 *

-« penf?
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GLOSSARY - NOMENCLATURE AND UNITS

k - spring constant or spring modulus (linear-1b/in) (torsional-in/lb/rad)
m - mass-lIb/in/s?

mg - w-weight-1b

J - polar mass moment of inertia—Ib/in/s?

I - area moment of inertia—in*

g - gravitational constant-386.4 in/s?

C - viscous damping mnsmnt{ﬁnear—gi).réf) (torsional—

)

in/lb/s
T

¢ - damping ratio = C/C,

- critical viscous damping constant—that amount of damping, which if introduced into the system just
prevents the system from vibrating

C

[4
X - displacement-in
X - velocity-in/s

X - acceleration— in/s*

0 - angular displacement-radian

<>
]

angular velocity-rad/s

6 - angular acceleration-rad/s

t - time-seconds
® - natural circular frequency-rad/s
Q - forced circular frequency-rad/s

r = % ratio of forced to natural circular frequency
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= % frequency of vibration in cycles/s

. logarithmic decrement = In ™
1 XM 4+ 1
2
[ -ef?

Polar area moment of inertia—in*
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